CHROM. 6920

Note

Gel permeation chromatography of glucose oligomers using polyacrylamide gels

NABIH K. SABBAGH and IRVING S. FAGERSON

Chenoweth Laboratory, University of Massachusetts, Amherst, Mass. 01002 (U.S.A.) (Received June 29th, 1973)

Separation of glucose polymers, as encountered in corn syrups, by use of gel chromatography has been described by Trenel and Emeis¹. John et al.² reported quantitative chromatography of glucose oligomers and other saccharides with low exclusion limit polyacrylamide gels (Bio-Gel P-2, 200-400 mesh and -400 mesh). The effect of different temperatures on the separation of malto-oligosaccharides with such systems has been investigated by Trenel et $al.^3$ and Dellweg et $al.^4$. In studying the nature of the separation of cellodextrin series, glucose-cellohexaose, Brown⁵ found that the interaction between gel and solute increased with molecular weight. This effect was more pronounced with the dextran gels when compared with polyacrylamide gels. Brown and Anderson^{6,7}, who studied the separation of xylodextrins on polyacrylamide and dextran gels, concluded that the solubilitydetermined partitioning is an important factor in separations in tightly cross-linked dextran gels. Brown⁸ has emphasized the importance of solubility-determined partitioning in a study of the influence of solvent and temperature in dextran gel chromatography. Low exclusion limit gels (Bio-Gel P-2 and Sephadex G-15) have been usually used as materials for the separation of glucose by gel permeation chromatography. We wish to report here the use of an acrylamide gel of higher exclusion limit (Bio-Gel P-4) which we believe offers an improved resolution for the higher polymers of glucose.

EXPERIMENTAL

Polyacrylamide gels Bio-Gel P-2, -400 mesh and P-4, -400 mesh (Bio-Rad Lab., Richmond, Calif., U.S.A.) were hydrated overnight with an excess of deionized distilled water. Removal of fine particles was achieved by decantation. Once the fine particles were removed, the slurry was heated in a water-bath to about 60° for 10 min, then degassed using a water aspirator. Two K16/100 analytical columns (Pharmacia, Piscataway, N. J., U.S.A.) were used in this study. Uniform packing was achieved by use of a reservoir Sephadex R 15/16 (Pharmacia). After filling, deionized, distilled and previously degassed water was pumped through columns making certain that the system was free of entrapped air. A Milton Roy Minipump (Milton Roy, Philadelphia, Pa., U.S.A.) was used to provide flow-rates of 20.0 and 18.0 ml/h for P-2 and P-4 columns, respectively. Constant temperature

NOTES

was maintained in the column jackets by circulating water at 45°. Eluant was pumped through the columns for 10 h before any sample injection was made to allow equilibration to take place. Samples were prepared by making a solution of 8% (w/v) of a commercial, acid-hydrolyzed corn syrup of 42 dextrose equivalents. 200- μ l samples were injected via a Chromatronix off-column septum injector, Model 164A11 (Chromatronix, Berkeley, Calif., U.S.A.) which was in series with the column inlet. The column effluent was monitored with a differential refractive index monitor (Pharmacia) equipped with a recorder. The temperature of the detector cells was maintained constant by circulating water from a bath held at 40°.

RESULTS AND DISCUSSION

Typical chromatograms obtained are shown in Figs. 1 and 2. The successive oligomers are identified as G_1 , G_2 , G_3 , ... etc. corresponding to the number of glucose units, *i.e.*, glucose, maltose, maltotriose, etc. The identity of the emergent fractions was verified by comparisons of elution volumes with known standards

Fig. 1. Chromatogram of corn syrup (42 dextrose equivalents). Column, $1m \times 1.6$ cm, packed with Bio-Gel P-2 (-400 mesh); flow-rate, 20.0 ml/h; temperature, 45°.

Fig. 2. Chromatogram of corn syrup (42 dextrose equivalents). Column, $1 \text{ m} \times 1.6 \text{ cm}$, packed with Bio-Gel P-4 (-400 mesh); flow-rate, 18.0 ml/h; temperature, 45°.

	Bio-Gel			
· · ·	P-2	P-4		
Total volume (mi):	188.0	188.0		
Void volume (ml):	52.9	45.6		
Internal volume (ml):	97.6	113.5		
Polymer volume (ml):	37.5	28.9		
Elution volume $(^{2}H_{2}O)$ (ml):	150.5	159.1		
Sample volume	200 <i>µ</i> 1.	200 <i>µ</i> 1.		
Flow-rate	20.0 ml/h.	18.0 ml/h.		
Temperature	45 °	45 °		
Detector attenuation	4 ×	4 ×		
Column	$1.6 \times 100 \text{ cm}$	1.6×100 cm		

TABLE I BIO-GEL COLUMN OPERATING PARAMETERS

TABLE II

COMPARISON OF THEORETICAL PLATE DATA AND RESOLUTION FOR BIO-GEL P-2 AND P-4

Compound	Nreq		Neff		Nreq		N		R	
	P-2	P-4	P-2	P-4	P-2	P-4	P-2	P-4	P-2	P-4
Gı			3408	6208			9840	13360		
~	960	3294			2800	7123	0030	10000	1.96	1.39
G2	992	3222	3040	5776	3248	7259	9920	12992	1.74	1.36
G3		0220	2304	5360	0240	1200	8544	12720		-,
C .	928	2960	1004	40.60	3456	7056	9006	19440	1.61	1.37
G 4	928	2342	1904	4900	3984	5776	8090	12440	1.42	1.48
G5			1440	4464	0.001	••••	7120	11920		
C	736	2342	1175	4103	3600	6336	6704	12016	1.43	1.40
06	976	2541	1135	4192	7600	7328	0/04	12010	1.13	1.30
G7			1056	3840			7328	11840		
G	928	2662	000	3600	6528	8171	7278	11020	1.08	1.23
08	912	2830	880	3000	7600	9293	1520	11920	0,98	1.10
G٥	• • •		656	2832			66 5 6	9920		
Gu	816	2662	608	2012	8240	9448	7680	11152	0.95	1.07
010	1024	2499	000	4914	12816	9683	/080	11126	0.80	1.09
G11			512	2704			8032	11328		1 00
Gra		2830	_	2576		11750	_	11664		1.00
012	-	2746		2 970	-	12365		11004	_	1.02
G 13			-	2784			-	13728		1.06
G14	-	2662	_	2704		13088		14496	_	1.00
- 44		2461		2 /VT		13088			_	1.10
G15			-	3040	1		-	14400	· •	

TABLE III

COMPARISON OF DISTRIBUTION	COEFFICIENTS	AND	CAPACITY	FACTORS	FOR
BIO-GEL P-2 AND P-4					

Compound	Mol. wt.	V _e (ml)		KD		W (ml)		K'	
		P-2	P-4	P-2	P-4	P-2	P-4	P-2	P-4
Gı	180	128.1	143.2	0.770	0.860	5.16	4.96	1.422	2.140
G ₂	342	118.4	136.4	0.671	0.800	4.76	4.78	1.238	1.991
G ₃	504	110.1	130.0	0.586	0.745	4.76	4.61	1.081	1.851
G₄	666	102.6	123.8	0.510	0.689	4.56	4.43	0.940	1.715
G ₅	828	96.1	117.3	0.443	0.643	4.56	4.30	0.817	1.572
Go	990	89.7	111.4	0.377	0.580	4.36	4.07	0.696	1.443
G7	1152	85.0	106.2	0.329	0.534	3.97	3.90	0.607	1.329
G8	1314	80.8	101.5	0.286	0.492	3.77	3.72	0.527	1.226
G ₉	1476	77.1	97.3	0.248	0.456	3.77	3.90	0.458	1.134
G10	1638	73.7	93.3	0.213	0.420	3.37	3.54	0.393	1.046
G 11	1800	71.1	89,5	0.186	0.387	3.17	3.37	0.344	0.963
G12	1962		86.2	_	0.358		3.19	_	0.890
G13	2124	-	83.1		0.330		2.83	_	0.822
G14	2286	-	80.2		0.305		2.66		0.758
G 15	2448	-	77.4	-	0.280	-	2.50	-	0.697

from glucose through maltoheptaose. Standards were not available for verification of higher polymers.

Table I summarizes the column parameters. The total volume (V_i) was calculated from the column geometry. The void volume (V_0) was taken as the elution volume of the excluded dextrans in the syrup samples and co-incides with the V_0 of Blue Dextran as previously determined. The internal volume (V_i) , which is the total volume occupied by the solvent contained within the gel particles, was determined by measuring the elution volume of deuterated water $[V_c({}^2H_2O)]$ and from that value subtracting V_0 . The polymer volume (V_p) , which represents the volume occupied by the gel matrix *per se*, was calculated as $V_t - V_c({}^2H_2O)$.

The different relationships used in calculating the data for both columns and the symbols used are shown on p. 188. Tables II and III summarize the data and compare them for both P-2 and P-4 columns.

Throughout the whole series the P-4 column shows higher values for elution volumes, partition coefficients, capacity factor and number of theoretical plates than those for the P-2 column. This can be explained by the higher internal volume of the P-4 column (Table I). On the other hand, the higher value of V_i for the P-4 column results from the smaller values of V_0 and V_p for this column compared to the P-2 column. The resolution in the P-2 column decreases more rapidly than in the P-4 column, although the former shows higher values for the first 4 polymers in the series. A resolution of at least 1.00 is obtained for all components up to G_{15} in the P-4 column indicating a separation of about 98% of the individual components which is satisfactory for practical purposes. The number of theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column than the one for P-2, but this is more than compensated for by the theoretical and effective theoretical plates required are higher for the P-4 column the plates required for by the theoretical and effective theoretical plates required for by the theoretical and effective theoretical plates required for by the theoretical plates required for by the plates required for by the plates required for

retical number of plates in the P-4 column. More peaks are separated and detected with the P-4 gel, as expected, due to its higher exclusion limit (4000 daltons), nevertheless, the resolution obtained is much better than that obtained on the P-2 material. Water regain for the P-4 gel (2.4) is higher than that for P-2 (1.5) permitting the use of smaller amounts of the dry material in order to fill columns with the same total volume. There are some disadvantages, however, in using the P-4 gel. The main one is the longer analysis time. This is due to the limitations of using higher flow-rates since the gel is soft and tends to collapse at flow-rates higher than 18 ml/h. If higher resolution is to be achieved, one has to sacrifice time.

RELATIONSHIPS AND DEFINITIONS USED IN CALCULATION OF COLUMN DATA

 K_D = Distribution coefficient

 K_{av} = Distribution coefficient (when V_i is unknown)

N = Number of theoretical plates in the column

 $N_{\rm reg}$ = Number of theoretical plates required

 $n_{\rm eff}$ = Number of theoretical effective plates in the column

- n_{reg} = Number of theoretical effective plates required
- α = Relative permeation value
- α' = Relative retention value
- K' = Capacity of column for a given solute
- R = Resolution
- V_e = Elution volume
- W = Peak width.

ACKNOWLEDGEMENT

Acknowledgement is made to the National Research Council of Brazil for its financial support to N. Sabbagh during this investigation.

÷.,

REFERENCES

- 1 G. Trenel and C. C. Emeis, Die starke-Starch, 22 (1970) 41.
- 2 M. John, G. Trenel and H. Dellweg, J. Chromatogr., 42 (1969) 476.
- 3 G. Trenel, M. John and H. Dellweg, *FEBS Lett.*, 2 (1968) 74.
 4 H. Dellweg, M. John and G. Trenel, J. Chromatogr., 57 (1971) 89.
- 5 W. Brown, J. Chromatogr., 52 (1970) 273.
- 6 W. Brown and O. Anderson, J. Chromatogr., 67 (1972) 163.
- 7 W. Brown and O. Anderson, J. Chromatogr., 57 (1971) 255.
- 8 W. Brown, J. Chromatogr., 59 (1971) 335.